
52 The Delphi Magazine Issue 58

Strictly Confidential
Part two of an occasional cryptography series

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Well, here I am about to walk
upon England’s mountains

green, on a well-deserved vacation
(even though I say so myself).
Compared to the dry brown of
Colorado, Yorkshire looks way too
green. Lambs are bleating every-
where, the wind is sighing through
the trees, the smells of cooking are
escaping the kitchen. I’ll let this
April shower stop first before
going hiking, and what better way
to wait for the sun to break through
than write part two of my
cryptography series.

Manifesto
Back in February of this year, I
talked about some elementary
encryption methods in this
column. These algorithms were all
of historical importance only; the
only ones used these days are
ROT13 and XOR, the former being a
Caesar cipher and the latter a type
of Vigenère cipher. The encryption
algorithms I introduced in that arti-
cle were all what are known these
days as private key ciphers (or
secret key ciphers, or symmetric
ciphers: there’s nothing like having
a whole bunch of different names
to get us all confused!). We sup-
pose that our familiar encryption
protagonists, Alice and Bob, want
to communicate securely without
Eve being able to decipher their
messages by eavesdropping. A pri-
vate key cipher is an encryption
method where Alice and Bob have
previously agreed on a key and an
algorithm using that key and can
communicate by encrypting and
decrypting messages to their
hearts’ content, leaving their
adversary Eve, the eavesdropper,
to use sophisticated cryptanalysis
to try and break the encryption. A
simple enough scenario, but it has
one big problem.

If Alice and Bob can meet, they
can exchange their secret key
without fear that Eve can find it
out. But what if Alice and Bob are in
different countries, on opposite

sides of the Earth? Then Alice
would have to send the secret key
to Bob by mailing it, by giving it to a
(supposedly) trustworthy courier,
and so on. If Eve were able to inter-
cept the key between Alice and
Bob, she has the opportunity to
perform the ‘(wo)man in the mid-
dle’ attack. She sends her secret
key to Bob instead of Alice’s key,
and from then on she’s in control.
She intercepts encrypted mes-
sages from Alice, decrypts them
and then encrypts them (or a
changed message) with her secret
key and sends it on to Bob. Mes-
sages from Bob can be decrypted
and then altered and re-encrypted
with Alice’s key and sent on. Alice
and Bob have no idea what’s going
on.

Nevertheless, private key
ciphers are still extremely impor-
tant, providing we get round the
key-exchange problem. We’ll dis-
cuss how to do that in a further
instalment of this encryption
series, but for now we’ll continue
looking at private key ciphers.

Before going any further, I must
draw your attention to an impor-
tant point. The security of any
encryption process should not
depend on the secrecy of the algo-
rithm, it should depend solely on
the secrecy of the key or keys.
Secret algorithms are generally
insecure: be very wary of any prod-
ucts or software that employ a
secret algorithm ‘developed in-
house by our own analysts’. The
field of cryptography has, over the
past few years, developed some
extremely secure algorithms and
has broken some extremely dubi-
ous ones. The well-known algo-
rithms (DES, Blowfish, RSA, RC5)
are all secure: not because people
didn’t know how they worked, but
because academics and research-
ers have tried to break them and
failed. Their security comes from
this intense analysis, not from
hiding the internals of the algo-
rithm concerned. Of course, this

doesn’t mean that someone isn’t
going to devise some new mathe-
matics that breaks DES tomorrow,
but so far the important algo-
rithms remain unbroken (unless
you count a brute force attack). A
secret algorithm, on the other
hand, could be broken quite easily:
it hasn’t been subjected to peer
analysis and so is a complete
unknown. It may be secure, but
equally well it may be insecure and
you may never suspect it. And, by
the way, just as in programming
circles, the author of an algorithm
is usually the worst person to try
and find the bugs in it.

For Your Pleasure
In this article I would like to con-
tinue talking about private key
ciphers by introducing possibly
the most famous one of them all:
the Data Encryption Standard
(DES).

DES has a funny history and
illustrates Americans’ built-in
paranoia about their Government.
Back in the 70s, the National Stan-
dards Bureau (NSB, nowadays the
National Institute of Standards and
Technology, NIST) wanted to
create a secure encryption algo-
rithm for the Government’s secret
documents. It published an invita-
tion for academics or companies
to put forward a proposal. Now, in
those days, cryptography was a
new science, in its infancy. It was,
to put it mildly, in disarray. No
techniques had really been
designed for cryptography or
cryptanalysis. IBM had been
funding an internal project called
Lucifer that was an encryption
algorithm, but they had no idea

June 2000 The Delphi Magazine 53

whether it was secure or not. Nev-
ertheless, they put it forward. Now
comes the paranoia part. The NSB
sent it to the National Security
Agency (NSA), a secretive govern-
ment agency responsible for mes-
sage and radio interceptions
around the globe (the nearest
equivalent in the UK is GCHQ).
They returned the algorithm with
some alterations to what are
known as the S-boxes, saying that
the changes would make the algo-
rithm more secure. The paranoia
part? People said that the NSA had
managed to install a trapdoor into
the algorithm (a trapdoor is a
deliberate weakness to allow those
who know about it to easily
decrypt messages). The NSA also
reduced the key length from IBM’s
112 bits to 56. A lot of research
went into Lucifer and the NSA
changes, and eventually the algo-
rithm was accepted in 1977 and
renamed DES. Even since then, a
lot of research has been done to try
and prove or disprove the pres-
ence of a trapdoor, but none has
been found and DES has been

re-certified every 5 years from the
original acceptance date.

NIST is now in the process of ten-
dering for a new US standard for
encryption, the Advanced Encryp-
tion Standard (AES), the cipher that
is supposed to last for the next 30
or 40 years. DES is now too
insecure for top-secret use
because the speed of computing
hardware has grown so fast and so
large that brute force attacks are
now viable.

DES is a block cipher: one that
works on a block of bits at a time.
The plaintext message is divided
up into 64-bit blocks, with the last
block being padded to 64 bits in
some way, and each block is
encrypted. The key for DES is a
56-bit key, although it is usually
expressed as a 64-bit key (8 bytes)
of which every eighth bit is
ignored.

Since the key length is so short, it
is extremely amenable to a brute
force attack. To break DES, you
would need to try about 255 (3.6 *
1016) keys on average. If you could
try five million keys a second (just
about possible on a modern
Pentium III with a highly optimized
implementation), it would take
about 230 years to break DES. How-
ever, in 1997, the DESCHALL group
actually broke a DES-encrypted
message in about 4 months by har-
nessing idle machines connected
to the internet. Each machine
would try a small subset of the pos-
sible keys, and because there were
so many machines participating (a
peak of 14,000 machines was
reached), at one point they were
testing 7 billion keys per second. In
1993 a cryptographic researcher
called Michael Wiener devised a
machine for testing DES keys. He
estimated that if you spent about
$10,000 and built specialized hard-
ware for decrypting DES, you could
break a DES-encrypted message in
about 2.5 days, testing at a rate of
1.7 * 1011 keys per second (170 bil-
lion keys per second). If you
wanted to spend one million
dollars he estimated that you
could break a DES encrypted mes-
sage in about 35 minutes. Whether
anyone has ever built such a
machine is unknown.

Do The Strand
Anyway, let’s take a look at how a
‘modern’ encryption algorithm
works and describe the DES
cipher.

As I stated before, DES works on
blocks of 64 bits, or 8 bytes, at a
time. The block is put through the
DES mangle (possibly the best way
to describe it!) and out pops an
encrypted 64-bit block. We con-
tinue like this until the entire mes-
sage has been encrypted. For each
block we permute it a little and
then split it into two 32-bit halves,
known as the left and right halves.
Now comes the fun part: we push
the two halves through 16 rounds
of a peculiar function (known
unimaginatively as function ƒ) that
combines the right half and part of
the DES key, spitting out a 32-bit
value that’s then XORed with the
left half. This new value becomes
the new right half and the old right
half becomes the new left half.
After 16 loops of this shuffling, the
two halves are joined together and
the inverse of the original permu-
tation is performed. The result is
the encrypted version of the
original 64-bit plaintext. Phew!

Figure 1 shows a stylized rendi-
tion of this transformation. We
start out with the 64-bit plaintext at
the top, push it through the initial
permutation, and then split it into
two. Then we have 16 similar oper-
ations. For each operation we
select a different part (subkey) of
the DES key (here shown as subkey
1, subkey 2, etc), feed it into the
function ƒ with the right half and
XOR the result with the left half.
The figure then shows the switch-
ing of left and right halves.

It looks complicated enough
without going into what happens
inside function ƒ.

The amazing thing is that to
decrypt you follow exactly the
same process, with a single change:
the subkeys are fed into the pro-
cess in reverse order.

Before we delve into function ƒ,
we can start getting our feet wet by
writing some code. This will help
us solidify what we’ve learned so
far. Note that the code I’m going to
be writing is not going to be the
most efficient DES implementation

plainteplaintextxt

perpermm

LeftLeft RightRight

ff

xorxor
subksubkeey 1y 1

LeftLeft RightRight

ff

xorxor
subksubkeey 2y 2

LeftLeft RightRight

ff

xorxor
subksubkeey 16y 16

cipherciphertetextxt

perpermm

➤ Figure 1: DES flowchart.

54 The Delphi Magazine Issue 58

ever written: my objective is not to
dazzle you with my brilliant code
writing skills but to illustrate the
algorithm. You are welcome to
take my code and optimize it or
rewrite it in assembler.

The first thing we have to do is to
play around with the key. We have
to select the 56 bits we are going to
use out of the 64 bits the key is

usually expressed as. This is, how
can I put it, not as simple as you
might expect. The DES specifica-
tion provides us with a table that
tells us which bits go where. Table
1 shows the bit permutation we
have to do. For example, bit 0 of the
DES key we use in the encryption is
equal to bit 56 of the input key, bit 1
is equal to bit 48, etcetera, for all 56
bits. To make things easier for us
we’ll create a Boolean array to hold
the 56 bits of the key: it’ll help in a
moment when we create the
subkeys. Listing 1 has the routine
that generates the 56-element
Boolean array. (A note to the
interested reader: the bits in each
byte are numbered from the most
significant, bit 0, to the least signifi-
cant, bit 7. This is the opposite way
that many people number bits
where bit 0 is the least significant.)

Now we need to know how to
create the 16 subkeys we’ll be
feeding into the mysterious
function ƒ. For each subkey, we
select 48 bits from the derived
56-bit key. The process, as with
everything to do with DES, is com-
plex. We split the key into two
28-bit halves. Each half is then
rotated left by one or two bits,
depending on the round, with the
bits falling off the left end being fed
into the right end (it’s a circular
left shift, in other words). The
number of steps to rotate the key
at each round is given by the spe-
cial table shown in Table 2. We
then select the 48 required bits for
the subkey (yet another special
table defines this, Table 3). At this
point we might as well gather the
48 bits together into an array of 6
bytes: it’ll make it easier to feed
into the function ƒ. For decryption,
we do the same process, except
the subkeys are stored in reverse
order. Listing 2 shows this set of
transformations that generates
the 16 subkeys; notice that we pass
in a Boolean that defines whether
we are going to encrypt or decrypt.

At this point we have initialized
the DES state and are ready to
begin the actual encryption.

We divide up the plaintext into
64-bit, or 8-byte, chunks. For each
chunk we perform the same pro-
cess. First, we permute the bits in
the chunk. Believe it or not, this is
also defined by a special table

procedure ConvertDesKey(const aDesKey64 : TaaDesKey64;
var aKey56 : TDesKeyArray);

var
i : integer;
ByteNum : integer;
BitNum : integer;

begin
for i := 0 to 55 do begin {for each outbit bit...}
{work out which byte in the input key and which bit within
that byte that the output bit will be found}
ByteNum := DesKeyBitSelection[i] div 8;
BitNum := DesKeyBitSelection[i] mod 8;
{set the output boolean equal to this bit}
aKey56[i] := (aDesKey64[ByteNum] and BitMask[BitNum]) <> 0;

end;
end;

➤ Listing 1: Extracting the 56 bits from the DES key.

➤ Listing 2:
Generating the 16 subkeys.

➤ Table 1: Selecting 56 bits for a
DES key from the initial 64.

56 48 40 32 24 16 8 0

57 49 41 33 25 17 9 1

58 50 42 34 26 18 10 2

59 51 43 35 62 54 46 38

30 22 14 6 61 53 45 37

29 21 13 5 60 52 44 36

28 20 12 4 27 19 11 3

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shift 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

➤ Table 2: Number of bits to shift the DES key per round.

procedure CalcSubKeys(const aKey56 : TDesKeyArray;
var aSubKeys : TSubKeyArray; aForEncrypt : boolean);

var
i : integer;
LeftInx : integer;
ToInx : integer;
Round : integer;
Temp56 : TDesKeyArray;
SubKey : TSubKey;
ToByte : integer;
Accum : byte;
CurBit : byte;
TotalRotation : integer;

begin
{calculate the subkeys for all 16 rounds...}
for Round := 1 to 16 do begin
{calculate the total rotation required for this round}
TotalRotation := 0;
for i := 1 to Round do
inc(TotalRotation, DesSubKeyShifts[i]);

{left rotate the two halves of the 56-bit key by the
required shift for this round}
for LeftInx := 0 to 27 do begin
{calculate the next destination index}
ToInx := LeftInx - TotalRotation;
if (ToInx < 0) then {we have wrapped}
inc(ToInx, 28);

{move the bit from the original key to our temp key,

first for the left half and then for the right half}
Temp56[ToInx] := aKey56[LeftInx];
Temp56[ToInx+28] := aKey56[LeftInx+28];

end;
{now calculate this round's subkey by selecting the
correct bits}

ToByte := 0;
Accum := 0;
CurBit := $80;
for i := 0 to 47 do begin
if Temp56[DesSubKeyPerm[i]] then
Accum := Accum or CurBit;

CurBit := CurBit shr 1;
if (CurBit = 0) then begin
SubKey[ToByte] := Accum;
inc(ToByte);
Accum := 0;
CurBit := $80;

end;
end;
{save the subkey
note: for decryption we save subkeys in reverse order}
if aForEncrypt then
aSubKeys[Round] := SubKey

else
aSubKeys[17-Round] := SubKey;

end;
end;

56 The Delphi Magazine Issue 58

(Table 4)! Now we get into the fun
stuff. We split the plaintext chunk
into two halves and start doing the
rounds. The right half and the
correct subkey are fed into the
mysterious function ƒ, which
returns a 32-bit value. This is
XORed with the left half and
becomes the new right half. The
new left half is set equal to the old
right half. We do this operation 16
times.

Finally, we apply the initial per-
mutation, but in reverse, to the bits
of the result. No new table this
time, it’s embodied in Table 4. List-
ing 3 shows the code to perform all
this data mangling. Notice that it
uses a separate routine to perform
the permutations: Listing 4 has the
details of this procedure. It’s now
time for you and I to get a quick
cuppa before we go on to... drum
roll, fanfare... function ƒ.

Re-Make Re-Model
Welcome back. Function ƒ, then.
First, I shall describe how it works
in principle, and then we’ll take a
look at how to implement it more
efficiently.

As a reminder, function ƒ takes a
32-bit block of data (the right half
of a 64-bit data block), and a 48-bit
subkey, and then, switching the
blender to the maximum speed
setting, mixes them to produce a
32-bit encrypted block. The blend-
ing is performed by the use of a
series of bizarre transformations
called E-boxes, S-boxes, and
P-boxes (as far as I know they’re
called boxes because they’re rep-
resented by rectangles in the flow
charts for the algorithm).

The first step is the E-box. This is
an expansion permutation of the

input 32-bit block to produce 48
bits. The E-box has two main
purposes. The first is to expand
the data block by duplicating bits
so that it’s the same size as the
subkey, ready for an inevitable
XOR operation. The second is
more important, perhaps. DES is
designed so that the value of each
bit of ciphertext depends on every
bit of plaintext and key; a thorough
mixing, in other words. By dupli-
cating certain bits, output bits get
to be made up of more input bits
more quickly.

The E-box is, surprise, surprise,
defined by a table, Table 5. If you
look carefully you can see that we
are duplicating bits 4, 5, 8, 9, 12, 13,
16, 17, etc, to create the 16 missing
bits. We then XOR this expanded
data block with the subkey for this
round.

Well, that wasn’t too bad. Now
comes the real fun part (evil
laugh). We now perform a substitu-
tion operation using the eight
S-boxes (S standing for substitu-
tion). Split the 48-bit result from
the XOR operation into eight 6-bit
blocks. Each 6-bit block will use its
own S-box. Table 6, no groaning at

13 16 10 23 0 4 2 27 14 5 20 9 22 18 11 3

25 7 15 6 26 19 12 1 40 51 30 36 46 54 29 39

50 44 32 47 43 48 38 55 33 52 45 41 49 35 28 31

➤ Table 3: Selecting the 48 bits for a subkey.

57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7

56 48 40 32 24 16 8 0 58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4 62 54 46 38 30 22 14 6

➤ Table 4: Initial permutation of the input data.

procedure TaaDesEngine.ProcessBlock(const aSrc : TaaDesBlock;
var aDest: TaaDesBlock);

var
Round : integer;
Temp : longint;
Block : packed record
Left : longint;
Right : longint;

end;
begin
{perform the initial permutation of the source block}
CalcPermutation(aSrc, Block, DesStartPerm, sizeof(DesStartPerm));
for Round := 1 to 16 do begin
Temp := Block.Right;
Block.Right := Block.Left xor F(Block.Right, PSubKeyArray(FState)^[Round]);
Block.Left := Temp;

end;
{this will have done one too many swaps of the right and
left halves, so swap them back}
Temp := Block.Right;
Block.Right := Block.Left;
Block.Left := Temp;
{perform the final permutation of the source block}
CalcPermutation(Block, aDest, DesFinalPerm, sizeof(DesFinalPerm));

end;

➤ Listing 3: The high-level DES implementation.

procedure CalcPermutation(const aSource; var aDest;
const aMapping; aMapCount : integer);

var
Src : TByteArray absolute aSource;
Dest : TByteArray absolute aDest;
Map : TByteArray absolute aMapping;
i : integer;
FromByte : integer;
FromBit : integer;
ToByte : integer;
Accum : byte;
CurBit : byte;

begin
{using mapping, transfer bits from source to destination}
ToByte := 0;
Accum := 0;

CurBit := $80;
for i := 0 to pred(aMapCount) do begin
FromByte := Map[i] div 8;
FromBit := Map[i] mod 8;
if ((Src[FromByte] and BitMask[FromBit]) <> 0) then
Accum := Accum or CurBit;

CurBit := CurBit shr 1;
if (CurBit = 0) then begin
Dest[ToByte] := Accum;
inc(ToByte);
Accum := 0;
CurBit := $80;

end;
end;

end;

➤ Listing 4: Permuting a set of
bits according to a mapping.

58 The Delphi Magazine Issue 58

the back, please, defines the S-box
for the first 6-bit block. The way it
is used goes like this: take the first
and last bits from the 6-bit block.
Combine them to form a 2-digit
binary number and this number
defines a row in the S-box table. So
for the input block 101010, the row
number is binary 10 (or 2 decimal),
so we should look at the third row
(the first row being row 0, of
course). Now we take the middle
four bits as a binary number and
then look at that element along the
row we’ve selected. For 101010, the
middle four bits form binary 0101
(or 5 decimal), so we look at the
sixth element of the second row
(elements are counted from zero
as well). We get the value 2. We
convert this into a 4-digit binary
number, 0010, and output that
as the substitution value for the
original 6 bits.

We repeat that for the other
seven 6-bit blocks. As I said, each of
these has its own S-box: it’s OK, I’m
not going to show all the tables,
and eventually we’ll end up with
eight 4-bit blocks which we join
together to make, fanfare, a 32-bit
block. It is through the S-boxes that
DES gets its power and inscrutabil-
ity. Up until now the transforma-
tions we’ve been describing have
all been simple stuff indeed and are
just there for mixing’s sake. With
the S-boxes we arrive at some
decidedly bizarre and hard-to-
analyze operations. Essentially,
DES is unbreakable because of the
S-boxes.

Unfortunately, we’re not quite
finished yet. There is one last per-
mutation to do, the P-box, which
shuffles all the bits in the result
from the S-boxes. Table 7, the last
one I promise, shows this final per-
mutation. The result that comes
out of the P-box is the result of
function ƒ.

Both Ends Burning
So, to recap, for every 64-bit block
we push into the DES algorithm, we
permute the bits, we split that into
two and perform 16 rounds of func-
tion ƒ with the right half and an
XOR with the left. For each call to
function ƒ we expand the input
32-bits to 48, XOR it with the cor-
rect subkey for that round, split
the answer into eight 6-bit blocks,
each of which are fed through an
S-box, combined to a 32-bit answer

that is then shuffled. The miracle is
not that we can encrypt a message
with this little lot, but that we can
decrypt it afterwards!

I mentioned at the beginning of
the discussion about function ƒ
that we would try and make it a
little more efficient when we imple-
ment it. Take the S-boxes, for
example. Although the algorithm
is pretty clear about what to do, if
we actually did it in that way, we’d
end up with the world’s slowest
DES implementation. What we do
instead is to rearrange the S-box
tables so that they become arrays
indexed by 6-bit values (a
32-element array). For our exam-
ple, 101010, we would set element
42 to 2.

There are other things we could
do as well, but we’ll leave all that to
the commercial products and just
make the simple S-box change I
described above. (If you own

➤ Table 5: The E-box expansion permutation.

31 0 1 2 3 4 3 4 5 6 7 8

7 8 9 10 11 12 11 12 13 14 15 16

15 16 17 18 19 20 19 20 21 22 23 24

23 24 25 26 27 28 27 28 29 30 31 0

➤ Table 6: The first S-box.

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

function F(const aRight: longint; const aSubKey: TSubKey):
longint;

var
i : integer;
BigRight : T48Bits;
Accum : byte;
Temp32 : T32Bits;

begin
{start off with the expansion permutation: the E-Box}
CalcPermutation(aRight, BigRight, DesEBoxPerm,
sizeof(DesEBoxPerm));

{XOR the subkey into the expanded data}
for i := 0 to 5 do
BigRight[i] := BigRight[i] xor aSubKey[i];

{now wade into the S-Boxes}
{..first}
Accum := (BigRight[0] and $FC) shr 2;
Temp32[0] := DesSBox1[Accum] shl 4;
{..second}
Accum := ((BigRight[0] and $03) shl 4) or

((BigRight[1] and $F0) shr 4);
Temp32[0] := Temp32[0] or DesSBox2[Accum];
{..third}
Accum := ((BigRight[1] and $0F) shl 2) or

((BigRight[2] and $C0) shr 6);
Temp32[1] := DesSBox3[Accum] shl 4;
{..fourth}
Accum := (BigRight[2] and $3F);
Temp32[1] := Temp32[1] or DesSBox4[Accum];
{..fifth}
Accum := (BigRight[3] and $FC) shr 2;
Temp32[2] := DesSBox5[Accum] shl 4;
{..sixth}
Accum := ((BigRight[3] and $03) shl 4) or

((BigRight[4] and $F0) shr 4);
Temp32[2] := Temp32[2] or DesSBox6[Accum];
{..seventh}
Accum := ((BigRight[4] and $0F) shl 2) or

((BigRight[5] and $C0) shr 6);
Temp32[3] := DesSBox7[Accum] shl 4;
{..eighth}
Accum := (BigRight[5] and $3F);
Temp32[3] := Temp32[3] or DesSBox8[Accum];
{end up with the final permutation: the P-Box}
CalcPermutation(Temp32, Result, DesPBoxPerm,
sizeof(DesPBoxPerm));

end;

➤ Listing 5:
The magic internal function ƒ.

15 6 19 20 28 11 27 16 0 14 22 25 4 17 30 9

1 7 23 13 31 26 2 8 18 12 29 5 21 10 3 24

➤ Table 7: P-box permutation.

June 2000 The Delphi Magazine 59

Advanced Cryptography by Bruce
Schneier, you can find the source
to DES that does perform all this
messing around. Although I’m
somewhat proficient in C, I find
that reading source that follows
some algorithm using a completely
different method with no com-
ments is a fast way to get frus-
trated.) Listing 5 shows the final
function ƒ that performs all the
fiddling around.

The Thrill Of It All
Having seen the DES algorithm,
let’s discuss some of its pros and
cons.

The first problem is the one I’ve
glossed over repeatedly and that
some of you may have noticed. DES
only works on messages that are a
whole number of 64-bit blocks in
size. The plaintext must be an inte-
gral multiple of 8 bytes in size. Only
one in eight possible plaintexts is
so obliging on average, the other
seven are inconsiderate and have a
final block that is too small. What
can we do? We could certainly pad
the last block with zero bytes (or
$FF bytes, or anything in between)
to make it exactly 8 bytes in length,
but that leaves a problem for the
decryption part: how does it know
how big the original plaintext was?
If we’re not careful, we’ll end up
with a decrypted plaintext that’s
longer than the original. For a text
message, that’s not too bad, but for
a zipfile or a database table, it’s a
disaster.

One thing we could do is to add
the length of the original plaintext
to the plaintext in some fashion
and encrypt it along with the
plaintext. There are several
choices here. The first might be to
attach the length (as a long inte-
ger) as a suffix to the plaintext and
then start encrypting. This might
be an attack point, though: in prac-
tice we can deduce the value of the
longint that’s been added at the
start by looking at the length of the
ciphertext. This gives us a good
start for the attack. A better way
might be to append the longint
length to the plaintext (in practice
we would make the length the last
four bytes of the last 8-byte block,
so we know where to find it). This

could lead to a similar attack,
though.

A better answer is to recognize
that we don’t need to store the
whole length of the plaintext, we
only need to store the length of the
last, short, block. This is going to
be a value from 0 to 7. If the
plaintext length is exactly divisible
by eight, we add a complete new
block to the plaintext and set the
last byte of it to zero; for all other
lengths we can pad out the last
block to the full eight bytes, making
the last byte equal to the number of
valid bytes in the final block. The
padding bytes can be any value we
like: zero, $FF, or whatever, but,
since we throw them away anyway,
set them to bytes output from a
random number generator. To be
really paranoid, since the value of
the last byte is contained within a
mere 3 bits, set the other 5 bits to
some random value too.

A much better alternative to this
scheme is to use a method called
ciphertext stealing. In this method
we use the length of the plaintext
itself to tell us what to do; we don’t
need to do any padding and the
ciphertext turns out to always be
the same length as the plaintext. If
the length of the plaintext is a
multiple of eight, then we simply
encrypt all the 64-bit blocks and
we’re done. Otherwise, the
plaintext has an extra 1 to 7 bytes
that we need to encrypt. We
encrypt the last-but-one block as
normal. Steal enough bytes from
this encrypted block to pad out the
final plaintext block to 8 bytes.
This leaves from 1 to 7 encrypted
bytes; we’ll use them in a moment.
Encrypt the padded final block.
Now we switch the ciphertext
blocks, outputting the final 8-byte
block first, followed by the remain-
ing 1 to 7 encrypted bytes. The
ciphertext ends up the same length
as the plaintext. On decryption,
we will decrypt the final full
ciphertext block. This gives us the
final partial plaintext, plus the
borrowed encrypted bytes. We
append these bytes to the final par-
tial ciphertext and decrypt them.
This will give us the final full
plaintext block, which comes
before the partial plaintext.

That’s a bit complicated, so let’s
take an example. Suppose the final
nine bytes of the plaintext were
‘abcedfghi’. We encrypt the first
eight to produce ‘ABCDEFGH’.
Borrow the last seven bytes of this,
saving the ‘A’, and add to the final
‘i’ to make ‘iBCDEFGH’ and encrypt
to make ‘STUVWXYZ’. We output
this as nine bytes: ‘STUVWXYZA’.
On decryption, we reverse the pro-
cess: decrypt ‘STUVWXYZ’ to
make ‘iBCEDFGH’. Save the ‘i’ and
return the borrowed encrypted
bytes to the final byte of ciphertext
to make ‘ABCDEFGH’. Decrypt to
make ‘abcdefgh’, append the
saved ‘i’ and output.

When used in practice, DES has
several well-defined modes. The
one I’ve discussed is known as
electronic codebook mode (ECB).
With ECB we simply encrypt and
decrypt each and every 64-bit
block in the same manner. If we
have two plaintext blocks that are
the same in the original message,
they will produce the same
ciphertext. (We can view the algo-
rithm as a huge codebook with
every possible variation of 8 bytes
having its own code.) This is a
point of attack for the
cryptanalyst. On the plus side, it
also allows for parallel implemen-
tations: since each block is pro-
cessed independently of all the
others, several blocks can be
encrypted at the same time on a
multiprocessor machine. Another
positive spin is that if there is a
transmission error and a few bits
get garbled, it doesn’t affect the
entire decryption, only a mere 8
bytes.

For not very much more coding
effort, we can use cipher block
chaining mode (CBC). With CBC we
XOR each plaintext block with the
previous ciphertext block before
encrypting it with the standard
DES. This way equal plaintext
blocks do not produce the same
ciphertext blocks. The CBC pro-
cess produces a cascading or ava-
lanche effect with the encryption
of a plaintext block depending on
every previous ciphertext block.
CBC mode helps protect against
certain attacks, and is deemed to
be a more secure implementation.

60 The Delphi Magazine Issue 58

In practice, CBC mode is the most
widely accepted mode to use with
DES, ECB being a less secure mode.

Triptych
Next, it is important to realize that
the security of DES relies on the
keys. The algorithm itself has been
subjected to many, many attacks
and tests and has passed them all
for standard usage. (There are a
couple of attacks that enable you
to find the key providing that you
are allowed to encrypt about 250
known plaintexts and get the
ciphertexts thus produced. In
practice, Alice and Bob are not
likely to allow Eve the opportunity
to encrypt 250 separate messages
with their private key!) There are,
however, a handful of keys that you
must not use. Four of them are
known as weak keys: if you encrypt
plaintext twice with one of these
keys, you get the original plaintext.
These keys are fairly obvious to
spot: internally they correspond to
56-bit keys with all bits set, all bits
clear, the first 28 bits set and the
last clear, or vice versa. Twelve are
known as semi-weak keys. These
are used in pairs: you encrypt
plaintext with the first key in the
pair, and then encrypting the
ciphertext so produced with the
second key produces the initial
plaintext.

However, it’s not usually worth
worrying about these weak and
semi-weak keys in practice. There
is a universe of 256 possible keys for
DES (72 quadrillion), and so the
possibility of choosing a ‘bad’ key
is small indeed. Generating a DES
key with some kind of random
number generator is pretty safe;
better might be to use a message
digest algorithm on a password.

Because DES is based on a key
containing a mere 56 bits
(approaching the point at which
brute force attacks are viable)
there have been proposals to make
DES more secure through increas-
ing the key length. One plan is to
provide a key that is directly split
into the sixteen 48-bit subkeys. In
other words, have a key that is 768
bits in length, the first 48 bits of
which is used in the first round, the
next 48 bits in the second round,

and so on. Although this sounds
great in theory to counter the brute
force attack (if we used every PC in
the world, say 100 million PCs, and
assumed they could all test 100
million keys per second, it would
take longer to find a key than is left
before the Universe is estimated to
reach its final demise), it does not
make DES any less vulnerable
to sophisticated mathematical
attacks such as differential crypta-
nalysis.

The most popular DES extension
is called triple-DES. With triple-DES
we effectively encrypt plaintext
three times. There are several dif-
ferent ways of doing this. The first
one is the most obvious and is
known as DES-EEE3. We select
three separate 56-bit keys, encrypt
the plaintext with the first key,
encrypt the resulting ciphertext
with the second, and then encrypt
the ciphertext from this second
encryption with the third. To
decrypt, we decrypt with the third
key, then the second and the first.

The second triple-DES method is
a little more peculiar and is known
as DES-EDE3. Again we have three
DES keys. We encrypt the plaintext
with the first key, decrypt the
resulting ciphertext with the
second and finally encrypt the
mish-mashed result of that with
the third key. To decrypt, we
decrypt with the third, encrypt
with the second and decrypt with
the first.

There are two further common
triple-DES implementations called
DES-EEE2 and DES-EDE2. These are
implemented exactly as their simi-
larly named brethren, except they
use just two keys. The first and
third encryptions are both done
with the first key, the second key
being used merely for the second
operation.

As you have probably guessed,
triple-DES is three times as slow as
standard DES.

Well, if you made it this far, con-
gratulations on getting through
such a long, intense article. DES is
not easy to understand (if it was, it
probably would not be so secure).
It’s an important encryption algo-
rithm, to be sure, but admittedly
wasn’t designed for modern 32-bit
processors, as can be seen from
the clunky code. Since DES became
a standard, there have been better
private-key algorithms properly
designed for 32-bit processors,
and part of the new AES standard
is to make sure that the encryption
algorithm for the next 30 to
40 years can be implemented
efficiently on 32-bit and 64-bit
processors.

On the disk I’ve supplied a DES
engine class that can encrypt and
decrypt streams (some of the list-
ings show methods of this class). It
can use either ECB or CBC modes. I
leave it as an easy exercise for the
reader to implement a triple-DES
engine class using this class.

As for me, I’m off to hike
Swaledale with my wife before
dinner. See you next time.

References:
Advanced Cryptography by Bruce

Schneier.
RSA Laboratories’ Frequently Asked

Questions About Today’s Cryptog-
raphy by RSA Data Security, Inc.

A Brute-force Search of DES
Keyspace, available at:
www.usenix.org/publications/

login/1998-5/curtin.html

Julian Bucknall likes going to the
cinema, not necessarily for the
music. He can be reached at
julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.

© Julian M Bucknall, 2000

	Manifesto
	For Your Pleasure
	Do The Strand
	Re-Make Re-Model
	Both Ends Burning
	The Thrill Of It All
	Triptych
	References:

